= idb.get_default_data_root() tmp_dir
Nonlinear Benchmark Workshop Datasets
Fill in a module description here
Wiener Hammerstein Dataset
def plot_workshop_data(dataset_function,max_sequences=3):
= dataset_function(always_return_tuples_of_datasets=True)
train_val, test = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
fig, axs # Plot training/validation data
for i, data in enumerate(train_val[:max_sequences]):
0].plot(data.u, alpha=0.7, label=f'Train {i+1}')
axs[1].plot(data.y, alpha=0.7, label=f'Train {i+1}')
axs[
# Plot test data
for i, data in enumerate(test[:max_sequences]):
0].plot(data.u, ls='--', alpha=0.8, label=f'Test {i+1}')
axs[1].plot(data.y, ls='--', alpha=0.8, label=f'Test {i+1}')
axs[
0].set_title('Input Sequences')
axs[0].set_ylabel('Amplitude')
axs[0].legend()
axs[
1].set_title('Output Sequences')
axs[1].set_xlabel('Sample')
axs[1].set_ylabel('Amplitude')
axs[1].legend()
axs[
plt.tight_layout() plot_workshop_data(nonlinear_benchmarks.WienerHammerBenchMark)
dl_wiener_hammerstein
dl_wiener_hammerstein (save_path:pathlib.Path, force_download:bool=False, save_train_valid:bool=True, split_idx:int=80000)
Type | Default | Details | |
---|---|---|---|
save_path | Path | directory the files are written to, created if it does not exist | |
force_download | bool | False | force download the dataset |
save_train_valid | bool | True | save unsplitted train and valid datasets in ‘train_valid’ subdirectory |
split_idx | int | 80000 | split index for train and valid datasets |
Returns | None |
/ 'wh' )
dl_wiener_hammerstein(tmp_dir / 'wh' ,save_train_valid=False) dl_wiener_hammerstein(tmp_dir
= idb.run_benchmark(
result =BenchmarkWH_Simulation,
spec=idb._dummy_build_model
build_model
)'metric_score'] result[
Building model with spec: BenchmarkWH_Simulation, seed: 274805046
247.20421449579186
= idb.run_benchmark(
result =BenchmarkWH_Prediction,
spec=idb._dummy_build_model
build_model
)'metric_score'] result[
Building model with spec: BenchmarkWH_Prediction, seed: 1203809552
241.88528087531387
Silverbox Dataset
plot_workshop_data(nonlinear_benchmarks.Silverbox)
dl_silverbox
dl_silverbox (save_path:pathlib.Path, force_download:bool=False, save_train_valid:bool=True, split_idx:int=50000)
Type | Default | Details | |
---|---|---|---|
save_path | Path | directory the files are written to, created if it does not exist | |
force_download | bool | False | force download the dataset |
save_train_valid | bool | True | save unsplitted train and valid datasets in ‘train_valid’ subdirectory |
split_idx | int | 50000 | split index for train and valid datasets |
Returns | None |
/ 'silverbox') dl_silverbox(tmp_dir
= idb.run_benchmark(
result =BenchmarkSilverbox_Simulation,
spec=idb._dummy_build_model
build_model
)'metric_score'] result[
Building model with spec: BenchmarkSilverbox_Simulation, seed: 665849708
50.27112906124001
= idb.run_benchmark(
result =BenchmarkSilverbox_Prediction,
spec=idb._dummy_build_model
build_model
)'metric_score'] result[
Building model with spec: BenchmarkSilverbox_Prediction, seed: 1014722045
45.73670007667041
Cascaded Tanks Dataset
plot_workshop_data(nonlinear_benchmarks.Cascaded_Tanks)
dl_cascaded_tanks
dl_cascaded_tanks (save_path:pathlib.Path, force_download:bool=False, save_train_valid:bool=True, split_idx:int=160)
Type | Default | Details | |
---|---|---|---|
save_path | Path | directory the files are written to, created if it does not exist | |
force_download | bool | False | force download the dataset |
save_train_valid | bool | True | save unsplitted train and valid datasets in ‘train_valid’ subdirectory |
split_idx | int | 160 | split index for train and valid datasets |
Returns | None |
/ 'cascaded_tanks' ) dl_cascaded_tanks(tmp_dir
= idb.run_benchmark(
result =BenchmarkCascadedTanks_Simulation,
spec=idb._dummy_build_model
build_model
)'metric_score'] result[
Building model with spec: BenchmarkCascadedTanks_Simulation, seed: 2125691036
6.190198457201898
= idb.run_benchmark(
result =BenchmarkCascadedTanks_Prediction,
spec=idb._dummy_build_model
build_model
)'metric_score'] result[
Building model with spec: BenchmarkCascadedTanks_Prediction, seed: 3952414853
6.087247931804716
EMPS Dataset
plot_workshop_data(nonlinear_benchmarks.EMPS)
dl_emps
dl_emps (save_path:pathlib.Path, force_download:bool=False, save_train_valid:bool=True, split_idx:int=18000)
Type | Default | Details | |
---|---|---|---|
save_path | Path | directory the files are written to, created if it does not exist | |
force_download | bool | False | force download the dataset |
save_train_valid | bool | True | save unsplitted train and valid datasets in ‘train_valid’ subdirectory |
split_idx | int | 18000 | split index for train and valid datasets |
Returns | None |
/ 'emps') dl_emps(tmp_dir
= idb.run_benchmark(
result =BenchmarkEMPS_Simulation,
spec=idb._dummy_build_model
build_model
)'metric_score'] result[
Building model with spec: BenchmarkEMPS_Simulation, seed: 159203475
148.94509370511423
= idb.run_benchmark(
result =BenchmarkEMPS_Prediction,
spec=idb._dummy_build_model
build_model
)'metric_score'] result[
Building model with spec: BenchmarkEMPS_Prediction, seed: 1758391957
127.00285207332765
Noisy Wiener Hammerstein
dl_noisy_wh
dl_noisy_wh (save_path:pathlib.Path, force_download:bool=False, save_train_valid:bool=True)
the wiener hammerstein dataset with process noise
Type | Default | Details | |
---|---|---|---|
save_path | Path | directory the files are written to, created if it does not exist | |
force_download | bool | False | force download the dataset |
save_train_valid | bool | True | save unsplitted train and valid datasets in ‘train_valid’ subdirectory |
Returns | None |
/ 'noisy_wh' ) dl_noisy_wh(tmp_dir
= result = idb.run_benchmark(
results =BenchmarkNoisyWH_Simulation,
spec=idb._dummy_build_model
build_model
)'metric_score'] results[
Building model with spec: BenchmarkNoisyWH_Simulation, seed: 3771735968
104.1542183129001
= result = idb.run_benchmark(
results =BenchmarkNoisyWH_Prediction,
spec=idb._dummy_build_model
build_model
)'metric_score'] results[
Building model with spec: BenchmarkNoisyWH_Prediction, seed: 421895102
81.6161143620699
Parallel Wienerhammerstein
#ToDo
F16
#ToDo
Coupled Electric Drives
plot_workshop_data(nonlinear_benchmarks.CED)
dl_ced
dl_ced (save_path:pathlib.Path, force_download:bool=False, save_train_valid:bool=True, split_idx:int=300)
Type | Default | Details | |
---|---|---|---|
save_path | Path | directory the files are written to, created if it does not exist | |
force_download | bool | False | force download the dataset |
save_train_valid | bool | True | save unsplitted train and valid datasets in ‘train_valid’ subdirectory |
split_idx | int | 300 | split index for train and valid datasets |
Returns | None |
/ 'ced' ) dl_ced(tmp_dir
= idb.run_benchmark(
result =BenchmarkCED_Simulation,
spec=idb._dummy_build_model
build_model
)'metric_score'] result[
Building model with spec: BenchmarkCED_Simulation, seed: 750852011
0.5816430221160263
= idb.run_benchmark(
result =BenchmarkCED_Prediction,
spec=idb._dummy_build_model
build_model
)'metric_score'] result[
Building model with spec: BenchmarkCED_Prediction, seed: 4123995934
0.49837518028637195